4.8.21

DOV'E' IL NUOVO CORONAVIRUS?

  


 

di Gianni Lannes

Non esiste una sola prova scientifica o semplicemente un riscontro tangibile dell'esistenza di una malattia denominata “Covid-19”; piuttosto è in atto a livello globale una psicosi di massa incentrata sull'ignoranza e sul conformismo, soprattutto basata sull'iniezione nel corpo sociale di massicce dosi di paura, oltreché di sieri sperimentali (imbottiti di sostanze artificiali per l'organismo umano) assemblati in tutta fretta, chiamati impropriamente “vaccini”. Infatti, a tutt'oggi, mercoledì 4 agosto 2021 nessun medico, ricercatore, università, centro di ricerca o laboratorio al mondo ha effettivamente isolato il cosiddetto “nuovo coronavirus (nome tecnico: “SARS CoV-2)”, da nessun paziente infetto e sintomatico. La comunità scientifica e medica e tutti gli esperti del globo terrestre, dopo 20 mesi di limitazione della libertà umana in gran parte del pianeta Terra, ne ignorano l'origine e l'effettivo vettore, nonché le modalità di trasmissione. Ecco il punto debole della montagna di menzogne, alimentate dal sistema di dominio attraverso autorità di ogni genere eticamente avariato.



Ne consegue, a rigor di logica che nessuno strumento sia pure di massima o elevata precisione, può essere calibrato per rilevare la presenza del SARS CoV-2 e quindi nessuna tecnica di rilevazione, a partire dal tampone che sforna notoriamente falsi positivi in serie standardizzata.

I test in uso attualmente - come ben sa anche uno studente di medicina al primo anno, e a maggior ragione i sanitari sul libro paga di Pig Pharma - si basano semplicemente su librerie digitali pubblicate dal CDC e dall’OMS, utilizzando “covid” come etichetta. I test Pcr sono realizzati per cercare queste sequenze genetiche ottenute dalle librerie digitali, il che significa che l’intero schema è logica circolare senza fondamento nella realtà fisica. Peraltro, Bei Resource, branca dell’ American Type Culture Collection, che vende questi stock di calibrazione per i test non fornisce alcuna garanzia o dichiarazione in merito alla loro accuratezza.

Andiamo al punto nodale. Esistono varie modalità di editing genetico accomunate dall'acronimo CRISPR. Si tratta di una tecnica che consente di intervenire con estrema precisione sulle sequenze genetiche di qualsiasi essere vivente in maniera che si possono produrre mutazioni puntiformi indistinguibili da quelle naturali. Così è possibile silenziare un gene dannoso o solo una parte di esso, oppure operare correzioni più estese, insomma è uno strumento che può essere usato in moltissimi campi a cominciare dall’agricoltura per finire alla biomedicina. Il sistema CRISPR/Cas9 si basa sull'impiego della proteina Cas9, una sorta di forbice molecolare in grado di tagliare un DNA bersaglio, che può essere programmata per effettuare specifiche modifiche al genoma di una cellula, sia questa animale, umana o vegetale. La Crispr/Cas9 è una tecnica definita di "taglia e cuci" per intervenire sul Dna delle cellule. Il Dna è la molecola presente all'interno di tutte le cellule, in una struttura chiamata nucleo: contiene le istruzioni per la gestione delle milioni di attività cellulari sotto forma di sequenze di informazioni, chiamate geni.Ogni singolo gene ha funzioni proprie e particolari. A volte il gene contiene le istruzioni per sintetizzare una proteina: mette cioè insieme i suoi "pezzi", che si chiamano aminoacidi. Altre volte ha funzioni di regolazione dell'attività di altri geni; altre volte ancora... non serve (o non sappiamo a che cosa serva). Oggi si ritiene che nell'uomo i geni che contengono istruzioni per le proteine siano circa 22.000 (più altrettanti che fanno altro o non sappiamo che cosa fanno), ma il numero varia molto nelle altre specie. Le istruzioni per qualsiasi compito abbia un gene sono sempre sotto forma di una sequenza lineare di mattoncini di cui è fatto il Dna, le basi (che per convenzione indichiamo con le lettere ACTG: adenina, citosina, timina, guanina); come se fossero le istruzioni di un codice di un sistema operativo, o di un software. Per sintetizzare la proteina il Dna deve "spedire" le istruzioni al di fuori del nucleo, nella parte delle cellula che si chiama citoplasma. Il Dna, però, non esce dal nucleo: la molecola che si incarica di copiare le istruzioni di un gene e portarle fuori si chiama Rna. Nel citoplasma l'Rna si appaia a piccoli corpuscoli chiamati ribosomi che leggono la sequenza e assemblano gli aminoacidi corrispondenti alle istruzioni del Dna. La lunga fila di aminoacidi attaccati l'uno all'altro è la proteina, che dopo essere stata assemblata va a fare il suo compito (strutturale, di enzima o altro) nella cellula.

Cdc, Oms e Fda  nonché tutti gli altri organi di burocrazia sanitaria sapevano fin da subito che raffreddori, influenze, bronchiti e polmoniti sarebbero stati trasformati, ovvero spacciati per Covid-19, unitamerte a incidenti stradali, omicidi, suicidi e tanto altro ancora, mascherando una miriade di patologie. Lo attesta inequivocabilmente un documento della Fda, già evidenziato a suo tempo. In esso si ammette che “poiché  non erano disponibili isolati di virus quantificati del 2019-nCoV per l’uso da parte dei Cdc al momento dello sviluppo dei temponi per il rilevamento dell’RNA del 2019-nCoV essi sono stati testati con stock caratterizzati di RNA a lunghezza intera trascritto in vitro (gene N; accesso GenBank: MN908947.2) di titolo noto (copie di RNA/µL) addizionato in un diluente costituito da una sospensione di cellule A549 umane e terreno di trasporto virale (VTM) per simulare il campione clinico”. Tradotto in parole semplici e comprensibili ai comuni mortali: non avevano un nuovo coronavirus da cui sviluppare e calibrare il test, quindi hanno mescolato un cocktail di cellule umane e frammenti di RNA di un comune virus del raffreddore etichettandolo “Sars coV-2. La sequenza GenBank a cui si fa riferimento è semplicemente una definizione di libreria digitale etichettata come “covid-19” ma non ha nemmeno materiali di riferimento di supporto nella realtà fisica.

Insomma, dei ciarlatani planetari (politicanti covidioti coadiuvati da camici sbiancati) per conto di una potente cricca di potere, sta tentando di sottomettere il genere umano per finalità eugenetiche, consentendo alle solite multinazionali farmaceutiche del crimine impunito, di incassare soldoni sulla pelle di persone a milioni.




Una riprova: «Si ritiene che i vaccini siano la migliore soluzione disponibile per controllare la pandemia di SARS-CoV-2 in corso. Tuttavia, l’emergere di ceppi resistenti ai vaccini potrebbe arrivare troppo rapidamente perché gli attuali sviluppi dei vaccini possano alleviare le conseguenze sanitarie, economiche e sociali della pandemia. Per quantificare e caratterizzare il rischio di tale scenario, abbiamo creato un modello derivato da SIR con dinamica stocastica iniziale del ceppo resistente al vaccino per studiare la probabilità della sua comparsa e insediamento. Come previsto, abbiamo scoperto che un rapido tasso di vaccinazione riduce la probabilità di comparsa di un ceppo resistente. Controintuitivamente, quando un rilassamento degli interventi non farmaceutici è avvenuto in un momento in cui la maggior parte degli individui della popolazione è già stata vaccinata, la probabilità di insorgenza di un ceppo resistente è stata notevolmente aumentata. Di conseguenza, dimostriamo che un periodo di riduzione della trasmissione vicino alla fine della campagna di vaccinazione può ridurre sostanzialmente la probabilità di insediamento di ceppi resistenti. I nostri risultati suggeriscono che i responsabili politici e gli individui dovrebbero prendere in considerazione il mantenimento di interventi non farmaceutici e comportamenti di riduzione della trasmissione durante l’intero periodo di vaccinazione».

Si tratta della sintesi di uno studio pubbicato il 30 luglio 2021, intitolato “I tassi di trasmissione e vaccinazione di SARS-CoV-2 influiscono sul destino dei ceppi resistenti al vaccino”. I ricercatori sostengono due verità già evidenziate da importanti virologi e biologi: i sieri antiCovid possono causare vaccino-resistenza proprio perché la pandemia è ancora in corso e per limitare il rischio di nuove varianti sono necessari “interventi non farmaceutici” ovvero i tanto temuti lockdown, i distanziamenti, i divieti di assembramenti e tutte quelle misure di restrizione della libertà per le popolazioni che stanno ormai creando più terrore del Covid stesso per le conseguenze economiche sul lungo periodo.

Riferimenti:

https://www.fda.gov/media/134922/download

https://www.nature.com/articles/s41598-021-95025-3

https://www.agendadigitale.eu/cultura-digitale/il-xxi-secolo-sara-lera-di-crispr-come-funziona-e-le-sue-applicazioni/

https://www.thelancet.com/coronavirus

https://www.epicentro.iss.it/vaccini/pdf/report-valutazione-impatto-vaccinazione-covid-19-30-lug-2021.pdf

http://www.quadernidellasalute.it/imgs/C_17_pubblicazioni_2586_allegato.pdf

https://www.epicentro.iss.it/coronavirus/sars-cov-2

https://sulatestagiannilannes.blogspot.com/search?q=vaccini

https://sulatestagiannilannes.blogspot.com/search?q=coronavirus

https://sulatestagiannilannes.blogspot.com/search?q=gates




  1. ^ Bak RO, Gomez-Ospina N, Porteus MH (August 2018). "Gene Editing on Center Stage". Trends in Genetics34 (8): 600–611. doi:10.1016/j.tig.2018.05.004PMID 29908711.

  2. ^ "The Nobel Prize in Chemistry 2020"The Nobel Prize. Retrieved 2020-12-10.

  3. ^ Cohen J (October 7, 2020). "CRISPR, the revolutionary genetic "scissors," honored by Chemistry Nobel"Sciencedoi:10.1126/science.abf0540.

  4. ^ Cohen J (2018-06-04). "With prestigious prize, an overshadowed CRISPR researcher wins the spotlight"Science | AAAS. Retrieved 2020-05-02.

  5. ^ "Nobel prize: who gets left out?"The Conversation. Retrieved 2021-04-15.

  6. ^ Lithuanian scientists not awarded Nobel prize despite discovering same technology. LRT.LT

  7. ^ Šikšnys V (2018-06-16). "Imam genų žirkles, iškerpam klaidą, ligos nelieka"Laisvės TV / Freedom TV. 12:22 minutes in. LaisvėsTV. <...>Tai mes tą savo straipsnį išsiuntėm į redakciją pirmieji, bet laimės ten daug nebuvo. Viena redakcija pasakė, kad mes net recenzentam nesiųsim. Nusiuntėm į kitą redakciją - tai jis (straipsnis) pragulėjo kažkur ant redaktoriaus stalo labai ilgai. Na ir taip galų gale išsiuntėm į trečią žurnalą ir trečias žurnalas po kelių mėnesių jį išspausdino. Bet, aišku, Berklio universiteto mokslininkams sekėsi geriau - jie išsiuntė straipsnį į žurnalą Science - jį priėmė ir išspausdino per 2 savaites. Nors iš tikro jie tą straispnį išsiuntė pora mėnesių vėliau nei mes. Retrieved 2018-06-30. <...> Well, we were who had sent the article first, but had not much of luck.

  8. Jump up to:a b Bak RO, Gomez-Ospina N, Porteus MH (August 2018). "Gene Editing on Center Stage". Trends in Genetics34 (8): 600–611. doi:10.1016/j.tig.2018.05.004PMID 29908711.

  9. ^ Zhang JH, Pandey M, Kahler JF, Loshakov A, Harris B, Dagur PK, et al. (November 2014). "Improving the specificity and efficacy of CRISPR/CAS9 and gRNA through target specific DNA reporter"Journal of Biotechnology189: 1–8. doi:10.1016/j.jbiotec.2014.08.033PMC 4252756PMID 25193712.

  10. ^ Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. (August 2018). "A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells"Nature Medicine24 (8): 1216–1224. doi:10.1038/s41591-018-0137-0PMC 6107069PMID 30082871.

  11. Jump up to:a b c Ledford H (March 2016). "CRISPR: gene editing is just the beginning"Nature531 (7593): 156–9. Bibcode:2016Natur.531..156Ldoi:10.1038/531156aPMID 26961639.

  12. ^ Travis J (17 December 2015). "Breakthrough of the Year: CRISPR makes the cut"Science Magazine. American Association for the Advancement of Science.

  13. ^ Ledford H (June 2015). "CRISPR, the disruptor"Nature522 (7554): 20–4. Bibcode:2015Natur.522...20Ldoi:10.1038/522020aPMID 26040877.

  14. ^ Young S (11 February 2014). "CRISPR and Other Genome Editing Tools Boost Medical Research and Gene Therapy's Reach"MIT Technology Review. Retrieved 2014-04-13.

  15. Jump up to:a b Heidenreich M, Zhang F (January 2016). "Applications of CRISPR-Cas systems in neuroscience"Nature Reviews. Neuroscience17 (1): 36–44. doi:10.1038/nrn.2015.2PMC 4899966PMID 26656253.

  16. ^ Barrangou R, Doudna JA (September 2016). "Applications of CRISPR technologies in research and beyond". Nature Biotechnology34 (9): 933–941. doi:10.1038/nbt.3659PMID 27606440S2CID 21543486.

  17. ^ Cox DB, Platt RJ, Zhang F (February 2015). "Therapeutic genome editing: prospects and challenges"Nature Medicine21 (2): 121–31. doi:10.1038/nm.3793PMC 4492683PMID 25654603.

  18. ^ Pollack A (May 11, 2015). "Jennifer Doudna, a Pioneer Who Helped Simplify Genome Editing"New York Times. Retrieved October 8, 2020.

  19. ^ "CRISPR Madness"GEN. 2013-11-08.

  20. ^ Staff (1 April 2015). "News: Products & Services". Genetic Engineering & Biotechnology News (Paper). 35 (7): 8. doi:10.1089/gen.35.21.05.

  21. ^ "Who Owns the Biggest Biotech Discovery of the Century? There's a bitter fight over the patents for CRISPR, a breakthrough new form of DNA editing"MIT Technology Review. Retrieved 25 February 2015.

  22. ^ Fye S. "Genetic Rough Draft: Editas and CRISPR"The Atlas Business Journal. Retrieved 19 January 2016.

  23. ^ Pollack A (15 February 2017). "Harvard and M.I.T. Scientists Win Gene-Editing Patent Fight"The New York Times.

  24. ^ Akst J (February 15, 2017). "Broad Wins CRISPR Patent Interference Case"The Scientist Magazine.

  25. ^ Noonan KE (February 16, 2017). "PTAB Decides CRISPR Interference in Favor of Broad Institute -- Their Reasoning"Patent Docs.

  26. ^ Potenza A (April 13, 2017). "UC Berkeley challenges decision that CRISPR patents belong to Broad Institute 3 comments The legal fight will likely continue for months or even years"The Verge. Retrieved 22 September 2017.

  27. ^ Buhr S (July 26, 2017). "The CRISPR patent battle is back on as UC Berkeley files an appeal"TechCrunch. Retrieved 22 September 2017.

  28. Jump up to:a b Philippidis A (August 7, 2017). "MilliporeSigma to Be Granted European Patent for CRISPR Technology"Genetic Engineering & Biotechology News. Retrieved 22 September 2017.

  29. ^ Akst J (March 24, 2017). "UC Berkeley Receives CRISPR Patent in Europe"The Scientist. Retrieved 22 September 2017.

  30. ^ Cohen J (4 August 2017). "CRISPR patent battle in Europe takes a 'wild' twist with surprising player"Sciencedoi:10.1126/science.aan7211.

  31. ^ "Top EU court: GMO rules cover plant gene editing technique". Retuers. 25 July 2018.

  32. ^ AFP. "US Trial Shows 3 Cancer Patients Had Their Genomes Altered Safely by CRISPR"ScienceAlert. Retrieved 2020-02-09.

  33. ^ Chamary JV. "These Scientists Deserved A Nobel Prize, But Didn't Discover Crispr"Forbes. Retrieved 2020-07-10.

  34. ^ Fischman, Josh. "Nobel Prize in Chemistry Goes to Discovery of 'Genetic Scissors' Called CRISPR/Cas9"Scientific American. Retrieved 2021-03-24.

  35. ^ "Two women share chemistry Nobel in historic win for 'genetic scissors'"BBC News. 2020-10-07. Retrieved 2020-12-06.

  36. ^ KaiserJun. 26, Jocelyn (26 June 2021). "CRISPR injected into the blood treats a genetic disease for first time"Science | AAAS. Retrieved 11 July 2021.

  37. ^ Gillmore, Julian D.; Gane, Ed; Taubel, Jorg; Kao, Justin; Fontana, Marianna; Maitland, Michael L.; Seitzer, Jessica; O’Connell, Daniel; Walsh, Kathryn R.; Wood, Kristy; Phillips, Jonathan; Xu, Yuanxin; Amaral, Adam; Boyd, Adam P.; Cehelsky, Jeffrey E.; McKee, Mark D.; Schiermeier, Andrew; Harari, Olivier; Murphy, Andrew; Kyratsous, Christos A.; Zambrowicz, Brian; Soltys, Randy; Gutstein, David E.; Leonard, John; Sepp-Lorenzino, Laura; Lebwohl, David (26 June 2021). "CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis"New England Journal of Medicinedoi:10.1056/NEJMoa2107454PMID 34215024. Retrieved 11 July 2021.

  38. Jump up to:a b c d e Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (November 2013). "Genome engineering using the CRISPR-Cas9 system"Nature Protocols8 (11): 2281–2308. doi:10.1038/nprot.2013.143hdl:1721.1/102943PMC 3969860PMID 24157548.

  39. ^ Ly J (2013). Discovering Genes Responsible for Kidney Diseases (Ph.D.). University of Toronto. Retrieved 26 December 2016.

  40. ^ Mohr SE, Hu Y, Ewen-Campen B, Housden BE, Viswanatha R, Perrimon N (September 2016). "CRISPR guide RNA design for research applications"The FEBS Journal283(17): 3232–8. doi:10.1111/febs.13777PMC 5014588PMID 27276584.

  41. ^ Brazelton VA, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, et al. (2015). "A quick guide to CRISPR sgRNA design tools"GM Crops & Food6 (4): 266–76. doi:10.1080/21645698.2015.1137690PMC 5033207PMID 26745836.

  42. ^ Horvath P, Barrangou R (January 2010). "CRISPR/Cas, the immune system of bacteria and archaea". Science327 (5962): 167–70. Bibcode:2010Sci...327..167Hdoi:10.1126/science.1179555PMID 20056882S2CID 17960960.

  43. ^ Bialk P, Rivera-Torres N, Strouse B, Kmiec EB (2015-06-08). "Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems"PLOS ONE10 (6): e0129308. Bibcode:2015PLoSO..1029308Bdoi:10.1371/journal.pone.0129308PMC 4459703PMID 26053390.

  44. ^ Sander JD, Joung JK (April 2014). "CRISPR-Cas systems for editing, regulating and targeting genomes"Nature Biotechnology32 (4): 347–55. doi:10.1038/nbt.2842PMC 4022601PMID 24584096.

  45. ^ Lino CA, Harper JC, Carney JP, Timlin JA (November 2018). "Delivering CRISPR: a review of the challenges and approaches"Drug Delivery25 (1): 1234–1257. doi:10.1080/10717544.2018.1474964PMC 6058482PMID 29801422.

  46. ^ Li L, Hu S, Chen X (July 2018). "Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities"Biomaterials171: 207–218. doi:10.1016/j.biomaterials.2018.04.031PMC 5944364PMID 29704747.

  47. ^ Jain PK, Lo JH, Rananaware S, Downing M, Panda A, Tai M, et al. (November 2019). "Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes"Nanoscale11 (44): 21317–21323. doi:10.1039/C9NR01786KPMC 7709491PMID 31670340.

  48. ^ Bak RO, Porteus MH (July 2017). "CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors"Cell Reports20 (3): 750–756. doi:10.1016/j.celrep.2017.06.064PMC 5568673PMID 28723575.

  49. ^ Schmidt F, Grimm D (February 2015). "CRISPR genome engineering and viral gene delivery: a case of mutual attraction". Biotechnology Journal10 (2): 258–72. doi:10.1002/biot.201400529PMID 25663455S2CID 37653318.

  50. ^ Waxmonsky N (24 September 2015). "CRISPR 101: Mammalian Expression Systems and Delivery Methods". Retrieved 11 June 2018.

  51. Jump up to:a b Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA, Savage DF (June 2016). "Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch"Nature Biotechnology34 (6): 646–51. doi:10.1038/nbt.3528PMC 4900928PMID 27136077.

  52. ^ Nuñez JK, Harrington LB, Doudna JA (March 2016). "Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering". ACS Chemical Biology11 (3): 681–8. doi:10.1021/acschembio.5b01019PMID 26857072.

  53. ^ Zhou W, Deiters A (April 2016). "Conditional Control of CRISPR/Cas9 Function"Angewandte Chemie55 (18): 5394–9. doi:10.1002/anie.201511441PMID 26996256.

  54. ^ Polstein LR, Gersbach CA (March 2015). "A light-inducible CRISPR-Cas9 system for control of endogenous gene activation"Nature Chemical Biology11 (3): 198–200. doi:10.1038/nchembio.1753PMC 4412021PMID 25664691.

  55. ^ Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M (February 2015). "CRISPR-Cas9-based photoactivatable transcription system"Chemistry & Biology22 (2): 169–74. doi:10.1016/j.chembiol.2014.12.011PMID 25619936.

  56. ^ Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA (March 2015). "Rational design of a split-Cas9 enzyme complex"Proceedings of the National Academy of Sciences of the United States of America112 (10): 2984–9. Bibcode:2015PNAS..112.2984Wdoi:10.1073/pnas.1501698112PMC 4364227PMID 25713377.

  57. ^ Nihongaki Y, Kawano F, Nakajima T, Sato M (July 2015). "Photoactivatable CRISPR-Cas9 for optogenetic genome editing". Nature Biotechnology33 (7): 755–60. doi:10.1038/nbt.3245PMID 26076431S2CID 205281536.

  58. ^ Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A (May 2015). "Optical Control of CRISPR/Cas9 Gene Editing"Journal of the American Chemical Society137 (17): 5642–5. doi:10.1021/ja512664vPMC 4919123PMID 25905628.

  59. ^ Jain PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, Bhatia SN (September 2016). "Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors"Angewandte Chemie55 (40): 12440–4. doi:10.1002/anie.201606123PMC 5864249PMID 27554600.

  60. ^ Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR (May 2015). "Small molecule-triggered Cas9 protein with improved genome-editing specificity"Nature Chemical Biology11 (5): 316–8. doi:10.1038/nchembio.1793PMC 4402137PMID 25848930.

  61. ^ Liu KI, Ramli MN, Woo CW, Wang Y, Zhao T, Zhang X, et al. (November 2016). "A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing". Nature Chemical Biology12 (11): 980–987. doi:10.1038/nchembio.2179PMID 27618190S2CID 33891039.

  62. ^ Truong DJ, Kühner K, Kühn R, Werfel S, Engelhardt S, Wurst W, Ortiz O (July 2015). "Development of an intein-mediated split-Cas9 system for gene therapy"Nucleic Acids Research43 (13): 6450–8. doi:10.1093/nar/gkv601PMC 4513872PMID 26082496.

  63. ^ Zetsche B, Volz SE, Zhang F (February 2015). "A split-Cas9 architecture for inducible genome editing and transcription modulation"Nature Biotechnology33 (2): 139–42. doi:10.1038/nbt.3149PMC 4503468PMID 25643054.

  64. ^ González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, Huangfu D (August 2014). "An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells"Cell Stem Cell15 (2): 215–226. doi:10.1016/j.stem.2014.05.018PMC 4127112PMID 24931489.

  65. ^ Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. (April 2015). "Inducible in vivo genome editing with CRISPR-Cas9"Nature Biotechnology33 (4): 390–394. doi:10.1038/nbt.3155PMC 4390466PMID 25690852.

  66. ^ Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, et al. (February 2015). "Small molecules enhance CRISPR genome editing in pluripotent stem cells"Cell Stem Cell16 (2): 142–7. doi:10.1016/j.stem.2015.01.003PMC 4461869PMID 25658371.

  67. ^ Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (May 2015). "Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining"Nature Biotechnology33 (5): 538–42. doi:10.1038/nbt.3190PMC 4618510PMID 25798939.

  68. ^ Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA (February 2018). "CRISPR/Cas9 library screening for drug target discovery". Journal of Human Genetics63(2): 179–186. doi:10.1038/s10038-017-0376-9PMID 29158600S2CID 3308058.

  69. ^ Gasiunas G, Barrangou R, Horvath P, Siksnys V (September 2012). "Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria"Proceedings of the National Academy of Sciences of the United States of America109 (39): E2579-86. doi:10.1073/pnas.1208507109PMC 3465414PMID 22949671.

  70. ^ Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M (May 2017). "Precise genome-wide base editing by the CRISPR Nickase system in yeast"Scientific Reports7 (1): 2095. doi:10.1038/s41598-017-02013-7PMC 5437071PMID 28522803.

  71. ^ Hiranniramol K, Chen Y, Liu W, Wang X (May 2020). "Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency"Bioinformatics36 (9): 2684–2689. doi:10.1093/bioinformatics/btaa041PMC 7203743PMID 31971562.

  72. Jump up to:a b c Agrotis A, Ketteler R (2015-09-24). "A new age in functional genomics using CRISPR/Cas9 in arrayed library screening"Frontiers in Genetics6: 300. doi:10.3389/fgene.2015.00300PMC 4585242PMID 26442115.

  73. ^ Yu JS, Yusa K (July 2019). "Genome-wide CRISPR-Cas9 screening in mammalian cells". Methods. 164–165: 29–35. doi:10.1016/j.ymeth.2019.04.015PMID 31034882.

  74. Jump up to:a b Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, et al. (April 2017). "Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening"Nature Protocols12 (4): 828–863. doi:10.1038/nprot.2017.016PMC 5526071PMID 28333914.

  75. Jump up to:a b Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA (February 2018). "CRISPR/Cas9 library screening for drug target discovery". Journal of Human Genetics63(2): 179–186. doi:10.1038/s10038-017-0376-9PMID 29158600S2CID 3308058.

  76. ^ "Addgene: Pooled Libraries"www.addgene.org. Retrieved 2020-01-31.

  77. ^ McDade JR, Waxmonsky NC, Swanson LE, Fan M (July 2016). "Practical Considerations for Using Pooled Lentiviral CRISPR Libraries". Current Protocols in Molecular Biology115(1): 31.5.1–31.5.13. doi:10.1002/cpmb.8PMID 27366891S2CID 5055878.

  78. ^ Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. (October 2013). "Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system"Cell Research23 (10): 1163–71. doi:10.1038/cr.2013.122PMC 3790238PMID 23979020.

  79. ^ Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. (October 2014). "Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation"Cell159 (3): 647–61. doi:10.1016/j.cell.2014.09.029PMC 4253859PMID 25307932.

  80. Jump up to:a b Dow LE (October 2015). "Modeling Disease In Vivo With CRISPR/Cas9"Trends in Molecular Medicine21 (10): 609–621. doi:10.1016/j.molmed.2015.07.006PMC 4592741PMID 26432018.

  81. ^ Doudna J, Mali P (2016). CRISPR-Cas : a laboratory manual. Cold Spring Harbor, New York. ISBN 9781621821304OCLC 922914104.

  82. ^ Zuo E, Huo X, Yao X, Hu X, Sun Y, Yin J, et al. (November 2017). "CRISPR/Cas9-mediated targeted chromosome elimination"Genome Biology18 (1): 224. doi:10.1186/s13059-017-1354-4PMC 5701507PMID 29178945Lay summary– Genome Web.

  83. ^ Javed MR, Sadaf M, Ahmed T, Jamil A, Nawaz M, Abbas H, Ijaz A (December 2018). "CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms". review. Current Microbiology75 (12): 1675–1683. doi:10.1007/s00284-018-1547-4PMID 30078067S2CID 51920661.

  84. ^ Giersch RM, Finnigan GC (December 2017). "Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in S. cerevisiae"The Yale Journal of Biology and Medicine90 (4): 643–651. PMC 5733842PMID 29259528.

  85. ^ Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T (2018). "Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects". review. Biotechnology Advances36 (3): 641–665. doi:10.1016/j.biotechadv.2018.01.006PMID 29331410.

  86. Jump up to:a b Ma D, Liu F (December 2015). "Genome Editing and Its Applications in Model Organisms". review. Genomics, Proteomics & Bioinformatics13 (6): 336–44. doi:10.1016/j.gpb.2015.12.001PMC 4747648PMID 26762955.

  87. ^ Khurshid H, Jan SA, Shinwari ZK, Jamal M, Shah SH (2018). "An Era of CRISPR/ Cas9 Mediated Plant Genome Editing". review. Current Issues in Molecular Biology26: 47–54. doi:10.21775/cimb.026.047PMID 28879855.

  88. ^ Simone BW, Martínez-Gálvez G, WareJoncas Z, Ekker SC (November 2018). "Fishing for understanding: Unlocking the zebrafish gene editor's toolbox". review. Methods150: 3–10. doi:10.1016/j.ymeth.2018.07.012PMC 6590056PMID 30076892.

  89. ^ Singh P, Schimenti JC, Bolcun-Filas E (January 2015). "A mouse geneticist's practical guide to CRISPR applications". review. Genetics199 (1): 1–15. doi:10.1534/genetics.114.169771PMC 4286675PMID 25271304.

  90. ^ Soni D, Wang DM, Regmi SC, Mittal M, Vogel SM, Schlüter D, Tiruppathi C (May 2018). "Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury"Cell Death Discovery4 (60): 60. doi:10.1038/s41420-018-0056-3PMC 5955943PMID 29796309.

  91. ^ Birling MC, Herault Y, Pavlovic G (August 2017). "Modeling human disease in rodents by CRISPR/Cas9 genome editing"Mammalian Genome28 (7–8): 291–301. doi:10.1007/s00335-017-9703-xPMC 5569124PMID 28677007.

  92. ^ Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, et al. (January 2018). "Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents"Nature553 (7687): 217–221. Bibcode:2018Natur.553..217Gdoi:10.1038/nature25164PMC 5784267PMID 29258297.

  93. ^ Kadam US, Shelake RM, Chavhan RL, Suprasanna P (October 2018). "Concerns regarding 'off-target' activity of genome editing endonucleases". review. Plant Physiology and Biochemistry131: 22–30. doi:10.1016/j.plaphy.2018.03.027PMID 29653762.

  94. ^ Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q (October 2018). "Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments". review. Journal of Biotechnology284: 91–101. doi:10.1016/j.jbiotec.2018.08.007PMID 30142414.

  95. ^ van Erp PB, Bloomer G, Wilkinson R, Wiedenheft B (June 2015). "The history and market impact of CRISPR RNA-guided nucleases"Current Opinion in Virology12: 85–90. doi:10.1016/j.coviro.2015.03.011PMC 4470805PMID 25914022.

  96. ^ Maggio I, Gonçalves MA (May 2015). "Genome editing at the crossroads of delivery, specificity, and fidelity"Trends in Biotechnology33 (5): 280–91. doi:10.1016/j.tibtech.2015.02.011PMID 25819765.

  97. ^ Rath D, Amlinger L, Rath A, Lundgren M (October 2015). "The CRISPR-Cas immune system: biology, mechanisms and applications"Biochimie117: 119–28. doi:10.1016/j.biochi.2015.03.025PMID 25868999.

  98. ^ "What Is CRISPR? How Does It Work? Is It Gene Editing? » LiveScience.Tech"LiveScience.Tech. 2018-04-30. Retrieved 2020-02-06.

  99. Jump up to:a b Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, et al. (October 2015). "Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids"Nature Communications6: 8715. Bibcode:2015NatCo...6.8715Fdoi:10.1038/ncomms9715PMC 4620584PMID 26493500.

  100. ^ Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, et al. (November 2017). "Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease"Nature Materials16 (11): 1112–1119. Bibcode:2017NatMa..16.1112Cdoi:10.1038/nmat4994PMC 5936694PMID 28967916.

  101. ^ Kim YK, Refaeli I, Brooks CR, Jing P, Gulieva RE, Hughes MR, et al. (December 2017). "Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development"Stem Cells35 (12): 2366–2378. doi:10.1002/stem.2707PMC 5742857PMID 28905451.

  102. ^ Bellin M, Casini S, Davis RP, D'Aniello C, Haas J, Ward-van Oostwaard D, et al. (December 2013). "Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome"The EMBO Journal32 (24): 3161–75. doi:10.1038/emboj.2013.240PMC 3981141PMID 24213244.

  103. ^ Cai L, Fisher AL, Huang H, Xie Z (December 2016). "CRISPR-mediated genome editing and human diseases"Genes & Diseases3 (4): 244–251. doi:10.1016/j.gendis.2016.07.003PMC 6150104PMID 30258895.

  104. ^ "Seven Diseases That CRISPR Technology Could Cure"Labiotech.eu. 2018-06-25. Retrieved 2018-08-22.

  105. Jump up to:a b "CRISPR/Cas9 and Cancer"Immuno-Oncology News. 2018-04-27. Retrieved 2019-02-18.

  106. ^ Crossley, Merlin. "New CRISPR technology could revolutionise gene therapy, offering new hope to people with genetic diseases"The Conversation. Retrieved 2021-02-03.

  107. ^ Cromer MK, Camarena J, Martin RM, Lesch BJ, Vakulskas CA, Bode NM, et al. (April 2021). "Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells". Nature Medicine27 (4): 677–687. doi:10.1038/s41591-021-01284-yPMID 33737751.

  108. ^ Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (September 2014). "Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac"Genome Research24 (9): 1526–33. doi:10.1101/gr.173427.114PMC 4158758PMID 25096406.

  109. ^ Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, et al. (November 2016). "CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells"Nature539 (7629): 384–389. Bibcode:2016Natur.539..384Ddoi:10.1038/nature20134PMC 5898607PMID 27820943.

  110. ^ "CRISPR "One Shot Cell Therapy for Hemophilia Developed | GEN"GEN. 2018-05-02. Retrieved 2018-08-22.

  111. ^ Marangi M, Pistritto G (2018-04-20). "Innovative Therapeutic Strategies for Cystic Fibrosis: Moving Forward to CRISPR Technique"Frontiers in Pharmacology9: 396. doi:10.3389/fphar.2018.00396PMC 5920621PMID 29731717.

  112. ^ Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, et al. (February 2017). "Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy"Nature Communications8: 14454. Bibcode:2017NatCo...814454Bdoi:10.1038/ncomms14454PMC 5316861PMID 28195574.

  113. ^ Eisenstein M (May 2018). "CRISPR takes on Huntington's disease"Nature557(7707): S42–S43. Bibcode:2018Natur.557S..42Edoi:10.1038/d41586-018-05177-yPMID 29844549.

  114. ^ Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M (2018). "Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases"Frontiers in Neuroscience12: 75. doi:10.3389/fnins.2018.00075PMC 5834764PMID 29535594.

  115. ^ King A (March 2018). "A CRISPR edit for heart disease"Nature555 (7695): S23–S25. Bibcode:2018Natur.555.....Kdoi:10.1038/d41586-018-02482-4PMID 29517035.

  116. ^ Scudellari M (July 2019). "Self-destructing mosquitoes and sterilized rodents: the promise of gene drives"Nature571 (7764): 160–162. Bibcode:2019Natur.571..160Sdoi:10.1038/d41586-019-02087-5PMID 31289403.

  117. ^ Abrahimi P, Chang WG, Kluger MS, Qyang Y, Tellides G, Saltzman WM, Pober JS (July 2015). "Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9"Circulation Research117 (2): 121–8. doi:10.1161/CIRCRESAHA.117.306290PMC 4490936PMID 25940550.

  118. ^ "A Year In, 1st Patient To Get Gene Editing For Sickle Cell Disease Is Thriving"NPR.org. Retrieved 2021-02-03.

  119. ^ "CRISPR technology to cure sickle cell disease"ScienceDaily. Retrieved 2021-02-03.

  120. ^ Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL (January 2014). "Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems"mBio5 (1): e00928-13. doi:10.1128/mBio.00928-13PMC 3903277PMID 24473129.

  121. ^ Citorik RJ, Mimee M, Lu TK (November 2014). "Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases"Nature Biotechnology32 (11): 1141–5. doi:10.1038/nbt.3011hdl:1721.1/100834PMC 4237163PMID 25240928.

  122. Jump up to:a b Gholizadeh P, Aghazadeh M, Asgharzadeh M, Kafil HS (November 2017). "Suppressing the CRISPR/Cas adaptive immune system in bacterial infections". European Journal of Clinical Microbiology & Infectious Diseases36 (11): 2043–2051. doi:10.1007/s10096-017-3036-2PMID 28601970S2CID 22716314.

  123. ^ Gibney E (January 2018). "What to expect in 2018: science in the new year"Nature553 (7686): 12–13. Bibcode:2018Natur.553...12Gdoi:10.1038/d41586-018-00009-5PMID 29300040.

  124. ^ Taylor P (Jan 3, 2019). "J&J takes stake in Locus' CRISPR-based 'Pac-Man' antimicrobials". Fierce Biotech. Retrieved 27 February 2019.

  125. ^ Reardon S (June 2017). "Modified viruses deliver death to antibiotic-resistant bacteria"Nature546 (7660): 586–587. Bibcode:2017Natur.546..586Rdoi:10.1038/nature.2017.22173PMID 28661508.

  126. ^ van Diemen FR, Kruse EM, Hooykaas MJ, Bruggeling CE, Schürch AC, van Ham PM, et al. (June 2016). "CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections"PLOS Pathogens12 (6): e1005701. doi:10.1371/journal.ppat.1005701PMC 4928872PMID 27362483Lay summary – PLOS Media YouTube Channel.

  127. Jump up to:a b c Science News Staff (December 17, 2015). "And Science's Breakthrough of the Year is …"news.sciencemag.org. Retrieved 2015-12-21.

  128. ^ Mullin E. "Using CRISPR on pigs could make their organs safer for human transplant"MIT Technology Review. Retrieved 2017-09-09.

  129. ^ Jensen TI, Axelgaard E, Bak RO (June 2019). "Therapeutic gene editing in haematological disorders with CRISPR/Cas9"British Journal of Haematology185 (5): 821–835. doi:10.1111/bjh.15851PMID 30864164S2CID 76663873.

  130. ^ Reardon S (2016). "First CRISPR clinical trial gets green light from US panel". Naturedoi:10.1038/nature.2016.20137S2CID 89466280.

  131. ^ Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, et al. (November 2020). "CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy"Science Advances6 (47): eabc9450. doi:10.1126/sciadv.abc9450PMID 33208369.

  132. ^ Dominguez AA, Lim WA, Qi LS (January 2016). "Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation"Nature Reviews. Molecular Cell Biology17 (1): 5–15. doi:10.1038/nrm.2015.2PMC 4922510PMID 26670017.

  133. ^ Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. (January 2014). "Genome-scale CRISPR-Cas9 knockout screening in human cells"Science343(6166): 84–87. Bibcode:2014Sci...343...84Sdoi:10.1126/science.1247005PMC 4089965PMID 24336571.

  134. Jump up to:a b Pennisi E (August 2013). "The CRISPR craze". News Focus. Science341 (6148): 833–6. Bibcode:2013Sci...341..833Pdoi:10.1126/science.341.6148.833PMID 23970676.

  135. Jump up to:a b Zimmer C (2016-06-03). "Scientists Find Form of Crispr Gene Editing With New Capabilities"The New York TimesISSN 0362-4331. Retrieved 2016-06-10.

  136. ^ Pickar-Oliver A, Gersbach CA (August 2019). "The next generation of CRISPR-Cas technologies and applications"Nature Reviews. Molecular Cell Biology20 (8): 490–507. doi:10.1038/s41580-019-0131-5PMC 7079207PMID 31147612.

  137. ^ Basak J, Nithin C (2015). "Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting"Frontiers in Plant Science6: 1001. doi:10.3389/fpls.2015.01001PMC 4652605PMID 26635829.

  138. ^ Akbari OS, Bellen HJ, Bier E, Bullock SL, Burt A, Church GM, et al. (August 2015). "BIOSAFETY. Safeguarding gene drive experiments in the laboratory"Science349(6251): 927–9. Bibcode:2015Sci...349..927Adoi:10.1126/science.aac7932PMC 4692367PMID 26229113.

  139. ^ Caplan AL, Parent B, Shen M, Plunkett C (November 2015). "No time to waste--the ethical challenges created by CRISPR: CRISPR/Cas, being an efficient, simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells"EMBO Reports16 (11): 1421–6. doi:10.15252/embr.201541337PMC 4641494PMID 26450575.

  140. ^ Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G, Kuiken T, et al. (August 2014). "Biotechnology. Regulating gene drives"Science345 (6197): 626–8. Bibcode:2014Sci...345..626Odoi:10.1126/science.1254287PMID 25035410.

  141. ^ Gu W, Crawford ED, O'Donovan BD, Wilson MR, Chow ED, Retallack H, DeRisi JL (March 2016). "Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications"Genome Biology17: 41. doi:10.1186/s13059-016-0904-5PMC 4778327PMID 26944702.

  142. ^ Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. (December 2019). "Search-and-replace genome editing without double-strand breaks or donor DNA"Nature576 (7785): 149–157. Bibcode:2019Natur.576..149Adoi:10.1038/s41586-019-1711-4PMC 6907074PMID 31634902.

  143. ^ A New Gene Editing Tool Could Make CRISPR More Precise. Lila Thulin, The Smithsonian Magazine. 21 October 2019.

  144. Jump up to:a b New 'prime' genome editor could surpass CRISPR. Jon Cohen, Science. 21 October 2019.

  145. Jump up to:a b New "Prime Editing" Method Makes Only Single-Stranded DNA Cuts. Emma Yasinski, The Scientist. 21 October 2019.

  146. Jump up to:a b Prime editing: DNA tool could correct 89% of genetic defects. James Gallagher, BBC News. 21 October 2019.

  147. ^ Regalado A (March 5, 2015). "Engineering the Perfect Baby"MIT Technology Review.

  148. ^ Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. (April 2015). "Biotechnology. A prudent path forward for genomic engineering and germline gene modification"Science348 (6230): 36–8. Bibcode:2015Sci...348...36Bdoi:10.1126/science.aab1028PMC 4394183PMID 25791083.

  149. ^ Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (March 2015). "Don't edit the human germ line"Nature519 (7544): 410–1. Bibcode:2015Natur.519..410Ldoi:10.1038/519410aPMID 25810189.

  150. ^ Wade N (19 March 2015). "Scientists Seek Ban on Method of Editing the Human Genome"The New York Times. Retrieved 20 March 2015. The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use.

  151. ^ Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. (May 2015). "CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes"Protein & Cell6 (5): 363–372. doi:10.1007/s13238-015-0153-5PMC 4417674PMID 25894090.

  152. ^ Kolata G (23 April 2015). "Chinese Scientists Edit Genes of Human Embryos, Raising Concerns"The New York Times. Retrieved 24 April 2015.

  153. Jump up to:a b Cyranoski D, Reardon S (2015). "Chinese scientists genetically modify human embryos". Naturedoi:10.1038/nature.2015.17378S2CID 87604469.

  154. ^ Regalado A (2016-05-08). "Chinese Researchers Experiment with Making HIV-Proof Embryos"MIT Technology Review. Retrieved 2016-06-10.

  155. ^ "International Summit on Gene Editing"National Academies of Sciences, Engineering, and Medicine. 3 December 2015. Retrieved 3 December 2015.

  156. ^ Brokowski C (April 2018). "Do CRISPR Germline Ethics Statements Cut It?"The CRISPR Journal1 (2): 115–125. doi:10.1089/crispr.2017.0024PMC 6694771PMID 31021208.

  157. ^ Begley S (28 November 2018). "Amid uproar, Chinese scientist defends creating gene-edited babies"STAT.

  158. ^ editor, Ian Sample Science (13 March 2019). "Scientists call for global moratorium on gene editing of embryos"Theguardian.com. Retrieved 14 March 2019.

  159. ^ Callaway E (February 2016). "UK scientists gain licence to edit genes in human embryos"Nature530 (7588): 18. Bibcode:2016Natur.530...18Cdoi:10.1038/nature.2016.19270PMID 26842037.

  160. ^ McHughen A, Smyth S (January 2008). "US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars"Plant Biotechnology Journal6 (1): 2–12. doi:10.1111/j.1467-7652.2007.00300.xPMID 17956539S2CID 3210837.

  161. ^ USDA"Re: Request to confirm" (PDF).

  162. ^ Waltz E (April 2016). "Gene-edited CRISPR mushroom escapes US regulation"Nature532 (7599): 293. Bibcode:2016Natur.532..293Wdoi:10.1038/nature.2016.19754PMID 27111611.

  163. ^ Ledford H (April 2016). "Gene-editing surges as US rethinks regulations"Nature532(7598): 158–9. Bibcode:2016Natur.532..158Ldoi:10.1038/532158aPMID 27075074.

  164. ^ "The FDA Is Cracking Down On Rogue Genetic Engineers", Kristen V. Brown. Gizmodo. February 1, 2017. Retrieved 5 feb 2017

  165. ^ "Guidance for Industry #187 / Regulation of Intentionally Altered Genomic DNA in Animals" (PDF). 2020-02-11.

  166. ^ Cyranoski D (August 2017). "China's embrace of embryo selection raises thorny questions"Nature548 (7667): 272–274. Bibcode:2017Natur.548..272Cdoi:10.1038/548272aPMID 28816265.

  167. ^ Peng Y (June 2016). "The morality and ethics governing CRISPR-Cas9 patents in China". Nature Biotechnology34 (6): 616–8. doi:10.1038/nbt.3590PMID 27281418S2CID 38509820.

  168. ^ Rana P, Marcus AD, Fan W (2018-01-21). "China, Unhampered by Rules, Races Ahead in Gene-Editing Trials"Wall Street JournalISSN 0099-9660. Retrieved 2018-01-23.

  169. ^ Talbot D (2016). "Precise Gene Editing in Plants/ 10 Breakthrough Technologies 2016"MIT Technology review. Massachusetts Institute of Technology. Retrieved 18 March 2016.

  170. ^ Larson C, Schaffer A (2014). "Genome Editing/ 10 Breakthrough Technologies 2014". Massachusetts Institute of Technology. Retrieved 18 March 2016.

  171. ^ 良艮創意, 很好設計, 李維宗設計"Tang Prize Laureates"www.tang-prize.org. Retrieved 2018-08-05.

  172. ^ "Press release: The Nobel Prize in Chemistry 2020". Nobel Foundation. Retrieved 7 October 2020.




Nessun commento:

Posta un commento

Gradita firma degli utenti.